姓名:王哲
职称:副教授
邮箱:zhewang@buaa.edu.cn
办公地址:北京航空航天大学沙河校区主楼D1016
教育/工作经历:
2013.09—2017.06 北京航空航天大学 宇航学院 飞行器设计与工程/学士
2017.09—2023.11 北京航空航天大学 空间与地球科学学院 航空宇航科学与技术(空间科学)/博士
2021.11—2022.10 瑞典皇家理工学院 空间等离子体物理所 访问博士
研究领域:
空间物理,磁层物理,行星物理
获奖情况:
2023 “第二十届全国日地空间物理学研讨会”青年优秀论文
2020 中国地球科学联合学术年会学生优秀论文奖
2017 第四届全球华人空间/太空天气科学大会优秀青年论文奖
教学成果:
主讲本科生课程:《电磁学》
科研成果:
1. 发展了一种基于特征向量投影的磁场重构方法,通过该方法揭示了地球磁重联过程中主X-线结构的时空演化及其周围的电子动力学行为,统计了湍动磁重联中次级磁零点处电流特征及伴随的能量耗散强度。
2. 开发了一种等离子体流速场的线性重构方法,通过该方法揭示了地球磁层顶重联出流边界处的电子KH涡旋的流线结构,确定了流线收缩/扩张对当地电磁能量耗散存在着影响。
3. 发现了重联出流中存在的一种由锋面通量管收缩和磁通量绳电场联合引起的双步加速机制,定量的分析了磁通量绳输运过程中费米加速,回旋加速,平行电场加速的随流速的变化规律。
一作/通讯 文章列表:
[1]Wang, Z., Liu, X. Y., Fu, H. S., et al. (2024). First Observation of Kinetic Alfvén Waves behind Reconnection Front in Terrestrial Magnetotail. The Astrophysical Journal, 960(1), 45. https://doi.org/10.3847/1538-4357/ad0cb5.
[2]Wang, Z., Fu, H. S., Guo, Z. Z., et al. (2024). Betatron Acceleration of Suprathermal Electrons upstream Martian Bow Shock. The Astrophysical Journal, 960(1), 31. https://doi.org/10.3847/1538-4357/ad0b10.
[3]Wang, Z., Vaivads, A., Fu, H. S., Cao, J. B., Liu, Y. Y. (2023). Efficient Electron Acceleration Driven by Flux Rope Evolution during Turbulent Reconnection. The Astrophysical Journal, 946(1), 39.
[4]Wang, Z., Vaivads, A., Fu, H. S., et al. (2023). Two-step Acceleration of Energetic Electrons at Magnetic Flux Ropes during Turbulent Reconnection. The Astrophysical Journal, 946(2), 67.
[5]Wang, Z., Fu, H. S., Chen, X. H., et al. (2022). The Effect of Current on Magnetic Null Topology during Turbulent Reconnection. The Astrophysical Journal, 927(1), 119. https://doi.org/10.3847/1538-4357/ac4eed.
[6]Wang, Z., Fu, H. S., Olshevsky, V., et al. (2020). Extending the FOTE Method to Three-dimensional Plasma Flow Fields. The Astrophysical Journal Supplement Series, 249(1), 10.
[7]Wang, Z., Fu, H. S., Vaivads, A., et al. (2020). Monitoring the Spatio-Temporal Evolution of a Reconnection X-line in Space. The Astrophysical Journal Letters, 899(2), L34.
[8]Wang, Z., Fu, H. S., Liu, C. M., et al. (2019). Electron Distribution Functions around a Reconnection X-Line Resolved by the FOTE Method. Geophysical Research Letters, 46(3), 1195-1204. https://doi.org/10.1029/ 2018GL081708.
[9]Tian, A. H., Wang, Z*., Fu, H. S*., & Guo, Z. Z. (2025). Evidence of a magnetic null in electron-only reconnection. Geophysical Research Letters, 52, e2024GL11310.
[10]Niu, J. Q., Wang, Z*., Fu, H. S*., Cao, J. B., & Fu, W. D. (2025). Observation and reconstruction of electron vortex in reconnection outflow. Journal of Geophysical Research: Space Physics, 130, e2024JA033473.
[11]Xu, Z. Y., Wang, Z*., Fu, H. S*., et al. (2025). Excitation and dispersion of whistler waves inside the contracting magnetic hole. Journal of Geophysical Research: Space Physics, 130, e2024JA033524.
[12]Du, C. X., Wang, Z*., Fu, H. S*., et al. (2024). Strong Field-Aligned Current and Its Driven Energy Conversion at Anti-Dipolarization Front. Geophysical Research Letters, 51, e2024GL110017.
[13]He, R. J., Wang, Z*., Fu, H. S*., et al. (2022). Characteristics of Electron Pitch-Angle Distribution in the Flapping Magnetotail. The Astrophysical Journal, 940(2), 99.
[14]Yu, Y., Wang, Z*., Fu, H. S*., Cao, J. B. (2022). Direct Evidence of Interchange Instabilities at Dipolarization Fronts. The Astrophysical Journal, 127(10), e2022JA030805.